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managing this wildfire for its natural benefits, though 
containing it within an area bounded by existing 
trails and topography, following the national park fire 
management plan.

Many temperate forests require periodic natural 
wildfire because it kills pests, thins out small trees, 
releases seeds from pine cones closed by pitch, 
and serves other functions critical for ecological 
integrity (Dodge 1972; Bowman et al. 2020; Stephens 
et al. 2021). Starting in the early 1900s, however, 
national and state policies sought to suppress all 
wildfire, even natural fires, across the western 
US, generating unnatural accumulations of woody 
fuel (van Wagtendonk 2007; Taylor and Scholl 
2012; North et al. 2022). Seasonally dry forests in 

 CLIMATE CHANGE SOLUTIONS

 The Pika Fire, Yosemite National Park, California, July 10, 2023, a lightning-
ignited wildfire managed for its natural ecological functions.   PATRICK GONZALEZ

On June 29, 2023, lightning naturally ignited a wildfire 
in Yosemite National Park. Two weeks later, I hiked 
the trail from the floor of Yosemite Valley up 1000 m 
in elevation to Glacier Point. Under a brilliant blue 
sky, the view at the top swept in an arc from Yosemite 
Falls to Half Dome to the distant crest of the Sierra 
Nevada. Smoke from that wildfire streamed up from 
the opposite edge of the valley and away to the north.

In many temperate forests in Yosemite and around 
the world, wildfire is natural and essential for long-
term forest health (Dodge 1972; Bowman et al. 2020; 
Stephens et al. 2021). The US National Park Service 
determined that this particular fire in Yosemite, 
named the Pika Fire, did not threaten people or 
property but that it would help decrease future fire 
risk by reducing an unnatural buildup of coarse 
woody debris and small trees from former policies 
of suppressing all fires. So, park fire crews were 
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Yosemite and the western US require a low severity–
high frequency fire regime, with fires every 10 to 
30 years (Stephens et al. 2007). Other temperate 
forests and shrublands and boreal forests experience 
a high severity–low frequency regime, with stand-
replacement fires every 30 to 300 years (Van de 
Water and Safford 2011; Hennebelle et al. 2018). In 
boreal forest, oil and gas operations and activities 
on roads and in towns accidentally ignite many fires 
(Kuklina et al. 2023).

In tropical and temperate rainforests, sub-alpine 
forests, Arctic tundra, and deserts, fire is not natural. 
In the tropical rainforests of the Amazon, Congo, 
and Indonesia, people intentionally burn vast forest 
areas to expand beef cattle pastures, soybean fields, 
and palm oil plantations, with timber logging causing 
accidental fires (Curtis et al. 2018; Vancutsem et 
al. 2021). China, Europe, and the US import a large 
fraction of the products of tropical deforestation 
(Busch et al. 2022; Villoria et al. 2022; zu Ermgassen 
et al. 2022; Partzsch et al. 2023; World Bank 2023).

At the same time, human-caused climate change is 
intensifying the heat that drives wildfires. Scientific 

research has detected statistically significant changes 
in numerous fire factors and attributed these changes 
to human-caused climate change more than other 
causes. Human-caused climate change has lengthened 
the fire weather season up to two months in parts of 
the world from 1979 to 2013 (Jolly et al. 2015; Zhuang 
et al. 2021), doubled the average annual area burned 
by wildfire over natural levels across the western 
US from 1984 to 2015 (Abatzoglou and Williams 
2016), tripled the average area burned by wildfire 
in summer across northern and central California 
from 1996 to 2021 (Turco et al. 2023), and increased 
burned area 7 to 11 times over natural levels in British 
Columbia, Canada, in the extreme fire season of 2017 
(Kirchmeier-Young et al. 2019). In protected areas 
of Canada and the US, climate factors (temperature, 
precipitation, relative humidity, evapotranspiration) 
accounted for 60% of burned area from 1984 to 2014, 
outweighing local human factors (population density, 
roads, and built area) (Mansuy et al. 2019). In these 
cases, climate change raised combustion potential by 
increasing the aridity of air, soil, and vegetation.

Detection and attribution analyses have also found 
cases in which climate change and wildfire have 

 The Las Conchas Fire, New Mexico, July 4, 2011, one of the wildfires that burned during the period in which human-caused climate change doubled wildfire area in 
the western US above natural levels (Abatzoglou and Williams 2016).   KARI GREER, USDA FOREST SERVICE
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degraded vegetation. In the western US, climate change 
reduced post-fire regeneration of ponderosa pine and 
Douglas-fir by half from 1979 to 2015 (Davis et al. 2019). 
In Table Mountain National Park, South Africa, the 
heat and aridity of climate change and legacy effects of 
invasive alien species reduced post-fire plant species 
richness 12% in globally unique fynbos vegetation from 
1966 to 2010 (Slingsby et al. 2017).

In the most recent assessment of the Intergovern-
mental Panel on Climate Change (IPCC 2022), 
colleagues and I found that western North America is 
currently the only region in the world where climate 
change exerts a greater influence on the area burned 
by wildfire than deforestation, ignitions from people, 
short-term cycles like El Niño, or other non-climate 
change factors (Parmesan et al. 2022). In addition, 
no analyses have yet examined the relative influence 
of climate change and non-climate change factors, 
such as human population and building growth, in 
explaining deaths and property damage in wildfires.

Globally, 3 to 4 million km2 per year of land burned 
in fires from 1994 to 2015, equivalent to the land area 
of India, with tropical deforestation causing over 
80% of the burning (Andela et al. 2017; Forkel et al. 

2019; Tyukavina et al. 2022). In the western US, the 
combination of old fuel accumulation from outdated 
policies and climate change increased average annual 
burned area 1000% from 1984 to 2020 (Abatzoglou et 
al. 2021; Juang et al. 2022).

Globally, wildfire generated carbon emissions of 
1.8 ± 0.3 billion tons per year from 2000 to 2019, 
mainly from tropical deforestation and burning of 
tropical peatlands (Zheng et al. 2021). In the Amazon 
rainforest, the combination of deforestation and 
climate change has driven fires and tree mortality 
that now emit more carbon to the atmosphere than 
vegetation growth naturally removes (Hubau et al. 
2020; Gatti et al. 2021; Qin et al. 2021; Fawcett et al. 
2023). In California, wildfires have caused ecosystems 
to emit more carbon than they remove, with two-
thirds of ecosystem carbon emissions coming from 
the 6% of the land that burned (Gonzalez et al. 
2015). Fire feeds back into climate change in a self-
reinforcing cycle—climate change causes more fire, 
which emits carbon, which makes climate change 
worse, which causes more fire.

Globally, climate change of 4ºC above pre-industrial 
temperatures could increase burned area 50% to 70% 

 Burned Amazon rainforest, to expand agriculture or cattle pasture, just outside the Parque Nacional de Anavilhanas, Brazil.   PATRICK GONZALEZ
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(Knorr et al. 2016; Kloster and Lasslop 2017) and 
increase fire frequency across one-third to two-thirds 
of global land (Gonzalez et al. 2010; Moritz et al. 
2012). In the lower 48 US states, climate change of 
4.5ºC could increase burned area 1400% (Barbero et 
al. 2015; Abatzoglou et al. 2021; Anderegg et al. 2022). 
Cutting carbon emissions would limit increases in 
temperature and fire (Anderegg et al. 2022).

Continued climate change also exacerbates fire risks in 
the two largest sinks of ecosystem carbon in the world: 
Arctic tundra and Amazon rainforest. Climate change 
of 4ºC above pre-industrial temperatures could cause 
fires in and thaw extensive areas of Arctic permafrost, 
releasing the equivalent of up to 15 years of 2019 glo-
bal carbon emissions (Turetsky et al. 2020; Miner et 
al. 2022). Fires due to continued climate change and 
deforestation could convert up to half of Amazon 
rainforest to non-forest, releasing the equivalent of one 
to three years of 2019 global carbon emissions (Salazar 
and Nobre 2010; Assis et al. 2022; Cano et al. 2022).

Natural resource managers can strengthen forest 
resilience and reduce risks of catastrophic wildfire 
under climate change through field measures specific 
to the three broad fire regimes: low severity–high 
frequency fire, high severity–low frequency fire, and 
no natural fire.

In ecosystems adapted to low severity–high frequency 
fire where natural fire has been suppressed, such as 
in seasonally dry forests of the western US, scientific 
research and field experience have shown that two 
practices can reduce risks of catastrophic fire under 
climate change: letting remote naturally ignited fires 
burn (managed wildland fire) and pre-emptively 
setting low-severity fires during safe weather condi-
tions (prescribed burning) (Stephens et al. 2009; 
Parks et al. 2015; van Mantgem et al. 2016).

When a wildfire crosses into an area previously 
burned with one of these practices, the fire generally 
continues along the ground at low severity. Ground-
level fires clear the understory, enabling the remain-
ing trees to grow larger. In contrast, wildfires in 
unburned areas can become catastrophic, going up 
into the canopy crown and completely burning trees.

In areas close to towns and suburbs and in densely 
overgrown forest, mechanical thinning is necessary 
before prescribed burning, to avoid high-severity 
crown fire (North et al. 2021). Thinning complements 
prescribed burning but does not replicate the ecologi-
cal functions and long-term risk reduction of fire 
(McIver et al. 2013).

After decades of unnatural fire suppression, the US 
National Park Service began to restore natural fire in 
Sequoia National Park in 1968 and Yosemite National 
Park in 1972 (van Wagtendonk 2007). Through the 
continuation and extension of this policy, the use 
of managed wildland fire and prescribed burning is 
restoring ecological integrity and reducing hazardous 
fuels in Grand Canyon National Park (Stoddard et al. 
2020), Yosemite National Park (Stephens et al. 2021), 
and other public lands. The Pika Fire is one example 
of managed wildland fire.

Moving from after-the-fact firefighting to proactive 
use of natural fire could strengthen forest resilience 
and reduce catastrophic wildfires under climate 
change (Stephens et al. 2013; Stephens et al. 2020; 
Prichard et al. 2021). Furthermore, prescribed burn-
ing and managed wildland fire can increase long-term 
carbon storage as the growth of large trees takes up 
more carbon over time than the short-term carbon 
losses from the burns (Hurteau and North 2009; 
Harris et al. 2019; McCauley et al. 2019). This net 
removal of carbon from the atmosphere reduces the 
cause of climate change. Recently, colleagues and I 
completed an update for the US National Cohesive 
Wildland Fire Strategy that integrates climate change 
considerations into national wildfire policy for the 
first time (WFLC 2023).

In ecosystems adapted to high severity–low frequency 
fire where human ignitions cause unnaturally frequent 
fire, such as boreal forest in Canada or chaparral shrub-
land in California, preventing unnatural ignitions, re-
moving invasive alien grasses, and mechanical thinning 
to restore mixed-structure vegetation mosaics can 
reduce risks of catastrophic fire under climate change 
(Keeley et al. 2005; Syphard et al. 2017a; Halofsky et al. 
2018).
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Wildfires have tragically killed many people, so saving 
human life remains the first goal of US national fire 
policy (WFLC 2014). In the US, 25 million more 
people have moved into and 13 million more houses 
were built in fire-prone areas from 1990 to 2010 
(Radeloff et al. 2018). Deaths and losses of homes 
are a function of the number of people who live in 
fire-prone areas. So, avoiding building new homes in 
fire-prone areas offers a common-sense precaution.

In ecosystems where fire is naturally absent or rare, 
including tropical and temperate rainforests, sub-
alpine forests, tundra, and deserts, halting intentional 
burning and other human ignitions is the most 
effective action to reduce risks of catastrophic fire 
under climate change (Morton et al. 2008; Adeney et 
al. 2009; Syphard et al. 2017b; McCarty et al. 2021). In 
addition, removal of highly flammable invasive alien 
grasses is critical in some desert ecosystems or other 
disrupted areas, such as abandoned agricultural lands 
in Hawaii.

Halting the intentional burning and deforestation of 
tropical rainforests requires substantial policy and 
economic measures. One measure, protection of 
forests in national parks, Indigenous reserves, and 

other protected areas, offers an effective way to halt 
deforestation (Adeney et al. 2009; Ernst et al. 2013; 
Gonzalez et al. 2014; Goncalves-Souza et al. 2021; 
Shah et al. 2021). Halting tropical deforestation would 
protect globally important biodiversity and cut global 
carbon emissions 10% (Friedlingstein et al. 2022), 
reducing climate change.

In each issue of Parks Stewardship Forum, I offer 
a specific solution that each of us can implement 
to reduce climate change and help protect natural 
areas. From the January 2023 issue (Gonzalez 2023), 
you may recall that, if all the cars and light trucks 
in the US were a separate country, they would be 
the eighth-biggest carbon polluter in the world, 
generating more than all sources in Canada and 
France combined (Friedlingstein et al. 2022). So, 
you can take meaningful action on climate change by 
walking, biking, or taking public transit. I live a car-
free life and recommend a further action that I take: 
ride public transit to visit national parks.

Public transit goes to many parks, including Yosemite 
National Park. When I travel to Yosemite from my 
home in Berkeley, California, I go completely by 
public transit. I walk to the Bay Area Rapid Transit 

 Prescribed burn, Sequoia National Park, California.   REBECCA PATERSON, US NATIONAL PARK SERVICE
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(BART) station for a train to Richmond, California. 
Then I board an Amtrak train to Merced, California. 
A Yosemite Area Regional Transportation System 
(YARTS) bus meets the train at the station and runs 
to Yosemite Valley.

I’ve also taken the Metrolink train and Ventura County 
bus to Santa Monica Mountains National Recreation 
Area, California, the South Shore Train from Chicago 
to Indiana Dunes National Park, the Park Connection 
bus to Denali National Park, Alaska, the MyCiti bus 
to Table Mountain National Park, South Africa, and 
Indian Railways and a local bus to Kanha National 
Park, India. I’ve visited many urban national parks in 
the US by public transit, using the T in Boston, the 
subway in New York, BART in San Francisco, and 
Metro in Washington, DC. On arrival, many parks 
operate public transit for travel within the park.

You can take public transit to make your national park 
trip more sustainable. The train or bus journey becomes 
part of the national park adventure. Taking public transit 
to and within parks can help cut the carbon pollution 
that causes climate change, helping prevent catastrophic 
wildfires and other risks to people and nature.

Patrick Gonzalez, Ph.D., is a climate change scientist, 
forest ecologist, and Executive Director of the 
University of California, Berkeley, Institute for Parks, 
People, and Biodiversity. http://www.patrickgonzalez.net
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