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Abstract

Anthropogenic climate change is altering ecological and human systems globally, including in United
States (US) national parks, which conserve unique biodiversity and resources. Yet, the magnitude and
spatial patterns of climate change across all the parks have been unknown. Here, in the first spatial
analysis of historical and projected temperature and precipitation across all 417 US national parks, we
show that climate change exposes the national park area more than the US as a whole. This occurs
because extensive parts of the national park area are in the Arctic, at high elevations, or in the arid
southwestern US. Between 1895 and 2010, mean annual temperature of the national park area
increased 1.0 °C £ 0.2 °C c:entury*1 (mean =+ standard error), double the US rate. Temperature has
increased most in Alaska and its extensive national parks. Annual precipitation of the national park
area declined significantly on 12% of national park area, compared to 3% of the US. Higher
temperatures due to climate change have coincided with low precipitation in the southwestern US,
intensifying droughts in the region. Physical and ecological changes have been detected and attributed
mainly to anthropogenic climate change in areas of significant temperature increases in US national
parks. From 2000 to 2100, under the highest emissions scenario (representative concentration
pathway [RCP] 8.5), park temperatures would increase 3 °C-9 °C, with climate velocities outpacing
dispersal capabilities of many plant and animal species. Even under the scenario of reduced emissions
(RCP2.6), temperature increases could exceed 2 °C for 58% of national park area, compared to 22% of
the US. Nevertheless, greenhouse gas emissions reductions could reduce projected temperature
increases in national parks by one-half to two-thirds.

Introduction

Anthropogenic emissions of greenhouse gases have
increased global temperature 0.85° + 0.2 °C century '
from 1880 to 2012 (IPCC 2013), causing glacial melt
(Vaughan et al 2013), wildfire increases (Abtazoglou
and Williams 2016), biome shifts (Gonzalez et al 2010),
plant and animal range shifts (Chen ef al 2011), and
other historical impacts around the world (IPCC 2014).
Continued climate change increases future vulnerabil-
ities of ecosystems to plant and animal extinctions

(Urban 2015), range losses (Warren et al 2018), invasive
species (Early et al 2016), and other disruptions (Settele
et al 2014). Conservation of intact ecosystems and
protection of endangered species rely considerably on
national parks around the world because they form
the core of the global protected areas network
(UNEP-WCMC and IUCN 2016). The shifts of biomes
and species ranges that are occurring due to climate
change increase the importance of national parks,
which can offer habitat refugia for climate-sensitive
species (Johnston et al 2012, Jones et al 2016).

© 2018 The Author(s). Published by IOP Publishing Ltd
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Furthermore, national parks provide ecosystem ser-
vices, including protection of watersheds that provide
drinking water for people (Null 2016) and conservation
of forests that store carbon, mitigating climate change
(Melillo etal 2016).

National parks in the US protect unique ecosys-
tems, biodiversity, and cultural sites in a network of
417 protected areas that cover 4% of the US, including
Yellowstone National Park, the first national park in
the world. Field research in US national parks has con-
tributed to the detection of 20th century changes to
glaciers, wildlife, and vegetation and attribution of
the causes of those changes mainly to anthropogenic
climate change (Moritz et al 2008, van Mantgem
etal 2009, Marzeion et al 2014, Gonzalez 2017). Under
continued climate change, analyses project future
vulnerabilities of ecosystems in US national parks
to glacial melt (Hall and Fagre 2003), increased
wildfire (Westerling et al 2011), vegetation shifts (Cole
et al 2011, Eigenbrod et al 2015), and wildlife extirpa-
tions (Stewart et al 2015, Wu et al 2018).

Effective resource management under climate
change will require spatial data of exposure to climate
change to analyze future vulnerabilities of species, eco-
systems, and resources, since vulnerability is mainly a
function of exposure, sensitivity, and adaptive capacity
(IPCC 2007, Dawson et al 2011). Spatial analyses that
identify vulnerable areas and potential refugia can
guide prioritization of locations for habitat conserva-
tion, fire management, invasive species control, and
other actions under climate change. So, achieving the
mission of the US National Park Service to conserve
resources unimpaired for future generations benefits
from spatial data on climate change trends. Past
studies examined climate exposure of 57 (Hansen
et al 2014) and 289 large parks (Monahan and
Fisichelli 2014), but no research has previously con-
ducted a comprehensive analysis across all US national
parks. Consequently, the magnitude of climate change
in many parks and in the national park area relative to
the entire US have been unknown.

Here, we address these knowledge gaps in the first
spatial analysis of historical and projected temperature
and precipitation changes across all US national parks.
The objectives of this research are to: (1) determine the
magnitude and spatial patterns of climate change
across all US national parks, (2) characterize the mag-
nitude of climate change in the national park area rela-
tive to the entire US, and (3) identify the individual
parks most exposed to climate change.

Methods

Research area

The research covered the land area of the 50 US states,
the District of Columbia, and four US territories, with
analyses of the US as a whole, each of six geographic
domains (contiguous 48 states, Alaska, Hawaii, Puerto
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Rico and Virgin Islands, Guam, American Samoa), the
area of all 417 US national parks together (national
park area), and each individual park. Analyses use the
national boundary vector file from the US Geological
Survey (https://nationalmap.gov, April 2014) and the
national park boundaries vector file from the US
National Park Service (http://irma.nps.gov, October
2017). Corrections of the national park boundaries file
to conform with the official National Park Service list
of 417 national parks (http://nps.gov/aboutus, Janu-
ary 2017) included removal of areas that were not
national parks, corrections to some individual park
boundaries, and tracing and addition of boundaries of
new national parks not yet in the file, from publicly
available information related to park establishment.

Historical climate data and analyses

For historical climate, we analyzed previously pub-
lished spatial climate data of monthly temperature and
precipitation, gridded and interpolated from weather
station observations (table S1 is available online at
stacks.iop.org/ERL/13/104001/mmedia). Historical
trends mainly span the years 1895 to 2010, the period
with spatial climate data available for the entire US,
with analyses of the period 1895-2016 for the contig-
uous states. For the contiguous states, the 800 m
spatial resolution Parameter-elevation Relationships
on Independent Slopes Model (PRISM) time series
(Daly et al 2008) was used. For Alaska, Hawaii, Guam,
and American Samoa, PRISM-derived 30-year cli-
matologies (Alaska, 771 m; Hawaii, 500 m; Guam,
American Samoa, 100 m) were used to downscale by
bilinear interpolation the 0.5° (~50 km) spatial resolu-
tion University of East Anglia Climatic Research Unit
(CRU) time series (Harris et al 2014). Time series for
Alaska were previously downscaled by the University
of Alaska, Fairbanks (https://snap.uaf.edu). Differ-
ences between an individual month in the coarse-
resolution time series and the finer resolution baseline
climatology were added to (for temperature) or multi-
plied by (for precipitation) the baseline value to
produce a finer resolution version of each month in
the time series. For Puerto Rico and the Virgin Islands,
the 0.5° CRU data were not downscaled, but were
divided into 18.5 km spatial resolution pixels.

Most original data files were unprojected rasters in
the geographic reference system, where the surface
area of pixels varied with latitude. We projected all files
to equal area projections (Lambert Azimuthal Equal
Area, contiguous 48 states; Albers Equal Area Conic,
other areas) to produce pixels of the same surface area
for the accurate calculation of spatial statistics. Area-
weighted averaging of results from the six domains
gave results for the national park area and the US as a
whole, except for the linear regression trends (descri-
bed below), which were directly calculated for the US
as a whole. Results extracted for each of the 417
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national parks cover all pixels that completely contain
an individual national park.

We calculated historical trends by linear regres-
sion, corrected for temporal autocorrelation, follow-
ing Intergovernmental Panel on Climate Change
(IPCC) methods (IPCC 2013). Linear least squares
regression of mean annual temperature and annual
precipitation versus time for the US, national park
area, each domain, and each national park gave the
historical trends, standard errors, and statistical prob-
abilities. Because simple linear least squares regression
may overestimate probabilities of temporal trends by
omitting temporal (serial) autocorrelation, we used
restricted maximum likelihood estimation (Patterson
and Thompson 1971, Cooper and Thompson 1977)
which, through calculation of the autocorrelation
coefficient (Box and Jenkins 1976) and effective sam-
ple size (Thiébaux and Zwiers 1984, Zwiers and von
Storch 1995), provides more robust estimates of prob-
ability. Climate velocity, the speed at which an area of
constant temperature moves horizontally under cli-
mate change, was calculated using a previously pub-
lished method (Loarie et al 2009).

Projected climate data and downscaling

For future projections, we conducted bias-corrected
statistical downscaling of the coarse-resolution output
of all general circulation models (GCM:s) available for
the most recent IPCC assessment report (IPCC 2013).
We downloaded Coupled Model Intercomparison
Project Phase 5 (https://esgf-node.llnl.gov/search/
cmip5) monthly output for all four IPCC emissions
scenarios, the representative concentration pathways
(RCPs) (Moss et al 2010), for all GCMs available in
October 2012 (table S2).

Using the historical climate spatial datasets as
baselines, we used the bias correction and spatial dis-
aggregation (BCSD) method (Wood et al 2004) to sta-
tistically downscale the coarse-resolution GCM
output for the periods 1971-2000, 2036-2065, and
2071-2100. For each GCM grid cell, a bias correction
function was generated by matching the empirical
cumulative density function (CDF) of a GCM-mod-
eled 1971-2000 period with the CDF of the actual
historical 1971-2000 data for each month for temper-
ature and precipitation. The bias of the modeled his-
torical run (1971-2000) of each GCM was corrected by
quantile-quantile mapping, which involved identify-
ing the probability of the uncorrected variable value
from the model CDF, then finding the corresponding
variable value for that probability on the historical
CDF. When correcting the bias of the projected temp-
erature runs of each GCM, the modeled mean temper-
ature change was first subtracted from the uncorrected
projected value to get the projected values in the same
range as the historical values, then the probability
of the residual projected value was identified, the
corresponding variable value on the historical CDF
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was found, and the modeled mean temperature
change was added back to the bias-corrected projected
temperature value. Residual projected temperature
values greater than the maximum historical value were
corrected using the correction value of the maximum
historical value. For projected precipitation, subtract-
ing the modeled change was not needed before the bias
correction (Wood etal 2004).

Differences (for temperature) or ratios (for pre-
cipitation) of coarse-resolution GCM values and the
fine-resolution historical baseline were calculated and
bilinear interpolation was used to downscale the
coarse grid cells to the finer historical resolution. After
BCSD downscaling, the mean, standard deviation,
and, for precipitation, the fraction of models agreeing
on the direction of change were calculated for each
ensemble. Area-weighted averaging of results from the
six domains gave results for the national park area and
the US as a whole.

Results

Historical climate changes

Between 1895 and 2010, mean annual temperature of
the national park area increased at double the rate of
the US as a whole (table 1, S3; figure 1) with significant
increases in all six geographic domains. For the
contiguous 48 states, the rates of temperature increase
from 1895 to 2016 were 0.7 °C 4 0.1 °C century '
(national park area, P = 0.006) and 0.4 °C + 0.1°C
century'1 (US, P < 0.0001), greater than for the period
1895-2010. A greater fraction of national park area
(63%) experienced significant temperature increases
than the US as a whole (42%) (table S3). The highest
mean annual temperature increases were in Alaska
(figure 2), consistent with analyses of weather station
measurements (Bieniek et al 2014), US National
Climate Assessment spatial analyses (USGCRP 2017),
and IPCC (2013) spatial analyses of the principal
global temperature time series (Hansen et al 2010,
Morice et al 2012, Vose et al 2012). Historical trends
show high spatial variation (figure S1). Seasonally,
winter, spring, and summer showed similar rates of
increase for the national park area, while the greatest
temperature increase for the US occurred in winter
(table S4). Climate velocity is generally lower in
mountain areas than in flat terrain (Loarie et al 2009,
Dobrowski et al 2013), so average climate velocity
between 1895 and 2010 was lower in the national park
area, which is more mountainous than the US as a
whole (table S3, figure S2).

The mean annual temperature difference between
the periods 1901-1960 and 1986-2016 (table S3), the
measure of change used in the US National Climate
Assessment (USGCRP 2017), was the same as the
1895-2010 temperature difference derived here from
the linear regression trend for the national park area
and nearly the same for the US. The 1901-2016 result
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Figure 1. Historical climate change, 1895-2010. Fractions (%) of the US national park area (NPS) and the US (USA) experiencing
changes in (a) mean annual temperature (°C century ') and (b) annual precipitation (% century ") (relative to 1895-2010 average
precipitation). Mean (dark bar) and standard error (shaded rectangle) are indicated for each area as a whole.

Table 1. Climate changes across the US and US national park area. Historical trends and standard errors from linear regression, after

correction for temporal autocorrelation. Historical period for areas outside the contiguous states is 1901-2009, the period of available spatial
data. Historical precipitation trends relative to average of entire period. Projected changes and standard deviations for the difference between
the periods 1971-2000 and 2071-2100, from ensembles of all general circulation model output available for IPCC (2013).

1895-2010 2000-2100
Temperature Precipitation
Area Temperature Precipitation
RCP2.6 RCP8.5 RCP2.6 RCP8.5
km® °Ccentury ' % century ' °C century ' % century '

United States

Contiguous 48 states 7.8 x 10° 0.3 £0.2 7+£2™ 1.7 £ 0.8 5+ 1.1 5+8 7+ 24
Alaska 1.5 x 10° 1.2 + 03" -7+ 3" 2.5+ 1.1 69 £ 1.6 11+7 31 £ 11
Hawaii 1.7 x 10* 1.6 + 0.1 —14+6" 1.1 £04 32+038 1+ 200 10 + 56
Puerto Rico, Virgin Is. 9.3 x 10° 1.3 £0.17 —-8+£5 14+04 34+ 0.6 0.1 £11 —23 + 26
Guam 5.6 x 107 0.2 £ 0.05™* —-1+£5 1+03 34+0.6 6+ 15 19 + 32
American Samoa 1.6 x 10 1.4 +£01™" 5+5 0.9 £0.3 2.7 +£ 0.6 -1+17 3+£25
Total 9.3 x 10° 0.4+ 01" 442" 1.8 £ 0.8 53+ 12 6+8 11 + 22
National Park System

Contiguous 48 states 1.3 x 10° 0.6 + 0.1™" 4+2 1.6 £0.7 49 +1 6+38 7+17
Alaska 22 % 10° 1.2 £03™ -7 +3" 25+ 1.1 6.6 £15 11+7 30 £ 11
Hawaii 1.8 x 10° 1.3+ 0.1 —-7+6 1.1 £04 32+038 1+ 260 12 + 51
Puerto Rico, Virgin Is. 39 1.4 +0.1° —-8+5 1404 2.9 £+ 0.6 —0.1 £ 10 —22 4+ 25
Guam 5 0.2 £ 0.05 ™ —-1+£5 1+03 3£0.6 6+ 15 19 + 32
American Samoa 13 1.4 +£0.17 5+ 5 0.9 +0.3 2.7 £ 06 —-1+17 3+24
Total 3.6 x 10° 1.0 £ 0.2 —4+2 2.2 +£09 59+13 94+9 21 + 14

Significance: * P < 0.05,* P < 0.01, " P < 0.001.

here for the contiguous states was lower than the result
in the US National Climate Assessment but the

1901-2009 results for Alaska were the same.

Because the configuration of the US weather
station network stabilized only in the 1950s (Vose

etal 2014) and because time series for small areas such
as parks can change when local stations change, we

also analyzed historical trends in individual parks for

the period 1950-2010 (table S5). For that period,
nine of the ten national parks with the highest
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Figure 2. Historical climate change, 1895-2010. (a) Mean annual temperature change (°C century ') across the US and US national
parks (green polygons). (b) Mean annual temperature (°C) of the national park area, annual values (thin line), five-year running
average (thick line), and trend from linear regression (straight line, P < 0.0001) corrected for temporal autocorrelation. (c) Annual
precipitation changes (% century "), relative to the 1895-2010 average. (d) Average annual precipitation (mmyr ') of the national
parkarea (trend P = 0.21).

temperature increase were in Alaska, with the highest
rate of 4.3 °C 4 1.1 °C century ' in Denali National
Preserve. A cold phase of the Pacific Decadal Oscilla-
tion lowered temperatures in Alaska from the late
1940s to the mid-1970s (Bieniek et al 2014), resulting
in higher calculated rates of temperature increase
for the period starting in 1950 than the period
startingin 1901.

Between 1895 and 2010, precipitation declined
significantly for 12% of national park area, compared
to 3% of the US (table S6). Annual precipitation
increased significantly in the US as a whole while
annual precipitation of the national park area
decreased, although the change was not statistically
significant (table 1, figure 1). For the contiguous 48
states, rates of precipitation increase from 1895
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to 2016 (7% =+ 2% century ' [US, P = 0.0007],
4% + 2% centur)f1 [national park area, P = 0.08])
were nearly the same as rates from 1895 to 2010. For
the US, precipitation differences between the periods
1901-1960 and 1986-2016 here (table S6) and in the
US National Climate Assessment (USGCRP 2017)
were equal to the difference calculated here from lin-
ear regression. Precipitation decreased considerably in
the southwestern US, Alaska, and Hawaii (figure 2).
Patterns were similar to US National Climate Assess-
ment results, except for eastern Alaska, although the
decrease there was also found in previous analyses
(Harris et al 2014, McAfee et al 2014). For the period
1950-2010, seven of the ten national parks with the
most severe precipitation decreases were in Hawaii
(table S5), consistent with previous analyses (Frazier
and Giambelluca 2017, USGCRP 2017). The largest
decline, —85% =+ 27% centuryfl, occurred at Hon-
ouliuli National Monument.

Projected climate changes

With continued greenhouse gas emissions, projected
rates of 21st century temperature increase under the
highest emissions scenario (RCP8.5) would be six
times greater than 20th century rates for the national
park area and the US (table 1, S7; figure 3). Compared
to RCP8.5, reduced emissions would lower the rate of
temperature increase by one-half (RCP4.5) to two-
thirds (RCP2.6). Under RCP8.5, 100% of national
park area would experience a mean annual temper-
ature increase >2 °C from 2000 to 2100. Under the
other emissions scenarios, this would decrease to
99% (RCP6.0), 97% (RCP4.5), and 58% (RCP2.6).
For the entire US, the fractions are: 100% (RCP8.5),
~100% (RCP6.0), 99% (RCP4.5), and 22% (RCP2.6).
Climate velocities from 2000 to 2100 could increase
in the national park area to three to nine times
historical velocities (tables S3, S7, figure S2). Under
RCP8.5, the fraction of the area with rapid climate
velocity (>200 km century ") could increase three to
seven times, to 7% of national park area (table S7).
The highest projected temperature increases in
the national parks are in Alaska, with rates up to
9 °C century ' (table S5, figure 3).

With continued greenhouse gas emissions, GCMs
project increased precipitation for the national park
area and the US (table 1, S8; figure 3). The ranges
(mean + standard deviation) of almost all the projec-
tions of annual precipitation overlap the range of
annual precipitation in the historical period, suggest-
ing no significant projections of change at a large scale,
with the exception of the national park area under
RCP8.5. The large standard deviations indicate low
agreement of GCMs on the direction of precipitation
change (figure S3). Across the mid-latitudes, GCM
ensembles are divided, with some GCMs projecting
annual precipitation increases and others decreases,
such as in Yosemite National Park (figure S4). The
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largest projected precipitation decreases in the
national parks are in the Virgin Islands, with rates
of —28% century ' (table S5).

Discussion

The magnitude of the historical temperature increase
and fraction of the area with significant increases were
greater for the national park area than the US as a
whole. This disproportionate temperature increase
occurs because a large fraction of national park area is
in the Arctic or at high elevations, where warming
occurs more quickly due to a thinner atmosphere,
melting of reflective snow cover, which uncovers
darker heat-absorbing surfaces, and other factors
(ACIA 2005, Vaughan et al 2013). Sixty-three percent
(63%) of national park area is in Alaska, compared to
16% of the US, and 19% of national park area is north
of the Arctic Circle, compared to 3% of the US. Much
of the national park area is in mountain ranges,
including the highest points in North America (Denali,
Denali National Park) and the contiguous states
(Mt. Whitney, Sequoia National Park). The average
elevation of the national park area is ~980 m above sea
level, compared to ~730 m for the US, and 5% of the
national park area is above 2500 m elevation, com-
pared to 2% of the US, from spatial analysis at 1 km
spatial resolution of US Geological Survey GTOPO30
data (https://Ita.cr.usgs.gov/GTOPO30). In addition,
the globally anomalous area of no significant temper-
ature change in the southeastern US (Portmann
et al 2009, Mascioli et al 2017) lowered the trend for
the US as a whole but affected the park trend less
because of the low fraction of the national park area in
that region.

Only under a scenario of substantial emissions
reductions (RCP2.6) would much of the national park
area be located in areas of <2 °C increase by 2100,
the upper limit of the Paris Agreement goal
(UNFCCC 2016). Under RCP2.6, the fraction of the
national park area located in areas of >2 °C increase
would be double the fraction for the US as a whole,
indicating a disproportionate exposure of national
park area. A majority of the national park area and
most individual national parks would be located in
areas of >2 °C increase under all four emissions sce-
narios (figure 4).

These projections of temperature increases under
all scenarios indicate a need for adaptation of resource
management in national parks (Baron et al 2009).
One adaptation measure under implementation is
conservation of potential climate refugia in desert eco-
systems in Joshua Tree National Park, identified
through a spatial analysis of vulnerability (Barrows
and Murphy-Mariscal 2012). Other adaptation mea-
sures under consideration for parks include conserva-
tion of climate refugia in mountain ecosystems
(Johnston et al 2012, Morelli et al 2016), conservation
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Figure 3. Projected climate change, 1971-2000 to 2071-2100. (a) Projected increase in mean annual temperature (°C century ") for

the highest emissions scenario (RCP8.5). (b) Mean annual temperature (°C) of the national park area for the historical period and two
projected periods, dark band = mean, bars = standard deviations of annual values (historical) or GCM ensembles (projections). (c)
Projected change in annual precipitation (% century '), relative to the 1971-2000 average, for RCP8.5. (d) Annual precipitation (mm

yr_l) with elements as in (b).

of thermal refugia for cold water fish (Briggs
et al 2018), protection of corridors for species migra-
tions (Baron et al 2009), and prescribed burning in
conifer forests to remove excessive understory vegeta-
tion and increase survival of older trees in drought
(van Mantgem et al 2016).

The lower climate velocities in the national park
area seem to show lower exposure relative to the US.

This is a result of calculation of climate velocity as hor-
izontal displacement (Loarie et al 2009) and the exten-
sive area of national parks in mountainous terrain,
where topographic relief creates high thermal gra-
dients over short horizontal distances. Climate velo-
city can underestimate exposure in mountainous
terrain, where upslope distances for species to track
suitable climate are greater than horizontal distances
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(Dobrowski and Parks 2016). Moreover, climate velo-
city does not account for potential disappearance of
suitable climate from mountain tops or other isolated
high elevation points (Hamann et al 2015). Therefore,
calculated climate velocities may underestimate expo-
sure in mountainous areas of the national parks.

The fraction of national park area experiencing
significant historical precipitation decreases was much
greater than the fraction of the US as a whole, indicat-
ing a disproportionate exposure of the national park
area to increased aridity. While annual precipitation
increased in the US as a whole, it did not increase for
the national park area because of the extensive area of
national parks in the arid southwestern US, which has
experienced the sharpest declines in precipitation in
the contiguous 48 states (figure 2) and severe droughts
that have been intensified by anthropogenic climate
change, in California (Williams et al 2015, Berg
and Hall 2017) and the upper Colorado River basin

(Crouch etal 2017, Udall and Overpeck 2017). In these
areas of high inter-annual variability of precipitation,
higher temperatures have coincided with low pre-
cipitation years.

Projected temperature increases overlap with pro-
jected precipitation decreases across much of the south-
western US (figure 3), indicating increased probabilities
of drought (Cook et al 2015) and aridification (Jones and
Gutzler 2016). Even in areas of increased precipitation,
projected higher temperatures would reduce the fraction
falling as snow (Lute et al 2015) and potentially increase
aridity through increased evapotranspiration (Hostetler
and Alder 2016). The fraction of national park and US
area with projected declines in precipitation increases
with greenhouse gas emissions (table S8). The low agree-
ment of GCMs on the direction of projected precipita-
tion changes in the mid-latitudes (figures S3, S4) suggests
a scenario planning approach when applying the projec-
tions to conservation planning (Peterson et al 2003).
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PRISM data for the contiguous 48 states are
derived from measurements at over 10 000 weather
stations (Daly et al 2008), but a limitation of our meth-
ods is that PRISM does not completely control for
weather station changes (Oyler et al 2015, Walton and
Hall 2018) and it may be less accurate in mountainous
terrain (Strachan and Daly 2017), overestimating
warming at higher elevations in the western US (Oyler
et al 2015). The TopoWx dataset (Oyler et al 2015),
which covers the contiguous 48 states starting in 1948,
has corrected for station changes over time, but it was
not available at the time of this research. PRISM has
demonstrated accuracy in comparisons with weather
station measurements (Bishop and Beier 2013, Behnke
et al 2016, Walton and Hall 2018). Comparison of
maximum temperatures from PRISM and 3855 Glo-
bal Historical Climatology Network weather stations
across the US found a high correlation (r > 0.95)
(Behnke et al 2016). Comparison of temperature
trends from PRISM and 51 weather stations in the
northeastern US found an average error for maximum
temperature of 0.1 °C century ' (Bishop and Beier
2013), within the standard error of historical temper-
ature trends in our results. PRISM has also shown acc-
uracy compared with ground-truth measurements in
a watershed where PRISM came within 5% of rain
gauge totals (Daly et al 2017).

In addition, analyses that used PRISM in parallel
with other gridded climate datasets for California
(Williams et al 2015) and the northwestern US (Abat-
zoglou et al 2014) found that the PRISM time series
closely tracked the key gridded climate datasets for the
world (University of East Anglia Climate Research
Unit (CRU) 50 km spatial resolution dataset (Harris
et al 2014), used in IPCC 2013) and the US (National
Oceanic and Atmospheric Administration 5 km spa-
tial resolution dataset (Vose et al 2014) used in the US
National Climate Assessment (USGCRP 2017)). Inter-
comparisons of up to eight gridded climate datasets
for the contiguous states found that PRISM was in the
middle of the range of the datasets (Guentchev
et al 2010, Behnke et al 2016, Walton and Hall 2018).
Furthermore, numerous research efforts have used
PRISM time series data to analyze multi-decadal
trends, including trends in climate (Abatzoglou
et al 2014, Williams et al 2015), hydrology (Small
et al 2006, Pederson et al 2013, Velpuri and
Senay 2013, Hostetler and Alder 2016), and ecology
(Diaz and Eischeid 2007, van Mantgem et al 2009, Wil-
liams et al 2010, Bartomeus et al 2011, Crimmins
etal 2011, Breed et al 2013, Dennison et al 2014, Han-
senetal2014).

It is only for the contiguous states that we use the
PRISM climate time series. For Alaska, Hawaii, Guam,
and American Samoa, we used historical datasets
(table S1) based on the CRU climate time series (Harris
et al 2014), which was designed for long-term trend
analysis, while a PRISM-derived climate average was
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used only to downscale those time series by bilinear
interpolation.

Another possible limitation is that the BCSD
method (Wood ef al 2004) may not completely capture
changes in the shape of climate probability distribu-
tions between the historical and projected periods.
The method may underestimate extreme variable
changes if tails of the variable distributions expand
beyond historical bounds. Extreme tail values might
not be represented in the existing observational
record.

This research has not sought to analyze climate
extremes. We focused on mean temperature and total
precipitation, to which extreme event frequencies,
global patterns of biomes, and many species ranges are
highly related.

Numerous physical and ecological changes detec-
ted in national parks and attributed in previous
research mainly to anthropogenic climate change have
occurred in areas of significant temperature increases
reported here. In Glacier Bay National Park, Muir Gla-
cier has melted and thinned 640 m in its lower reaches
from 1948 to 2000 (Larsen et al 2007, IPCC 2013) in an
area where temperature increased 2.8 °C century '
(1950-2009, this research). In Yosemite National
Park, subalpine forest shifted upslope into subalpine
meadow from 1880 to 2002 (Millar et al 2004) and the
ranges of small mammals moved upslope from 1914
to 2006 (Moritz et al 2008) in areas where temperature
increased as much as 0.9 °C century*1 (1895-2016,
this research; figure S1). In Noatak National Preserve,
boreal conifer forest shifted northward 80-100 m onto
tundra from the late 1700s to the late 1900s (Suarez
et al 1999) in an area where temperature increased
1.2°C century*1 (1901-2009, this research). In Yel-
lowstone National Park and the surrounding ecosys-
tem, bark beetle outbreaks due to climate change have
caused mortality of half of the area of whitebark pine
(Pinus albicaulis)y (Macfarlane et al 2013, Raffa
et al 2013) in areas where temperature increased as
muchas1.9°C century*1 (1950-2010, this research).

Numerous future vulnerabilities in national
parks are also located in areas of projected high
exposure found here. In Yellowstone National Park
(5.3°C centuryil, RCP8.5, this research), climate
change could increase area burned by wildfire three to
ten times from 1990 to 2100 (Westerling et al 2011),
far above natural levels. In Joshua Tree National Park
(4.6 °C centuryfl, RCP8.5, this research), climate
change could cause extensive mortality of Joshua trees
(Yucca brevifolia) by 2100 (Cole et al 2011) and loss of
up to 90% of areas with suitable climate (Barrows and
Murphy-Mariscal 2012). In Lassen Volcanic National
Park (4.6 °C century ', RCP8.5, this research), Amer-
ican pika (Ochotona princeps), a small alpine mammal,
is vulnerable to extirpation (Stewart et al 2015).

Projected climate velocities could exceed max-
imum natural dispersal capabilities of many trees
(~180km century '), small mammals (~230km

9



10P Publishing

Environ. Res. Lett. 13 (2018) 104001

century '), and herbaceous (~240 km
century ') (Settele et al 2014), challenging the abilities
of species such as Joshua tree and American pika to
remain in suitable climate in national parks (Cole
etal 2011, Stewart et al 2015). The possibility of future
climate states in North America with no current ana-
log, particularly in the Arctic and the southeastern and
southwestern US (Mahony ef al 2017), exacerbates the
vulnerability of restricted-range endemic species to
extinction.

plants

Conclusion

Through spatial analyses of historical and projected
temperature and precipitation, we have revealed a
previously unreported disproportionate magnitude of
climate change in the US national parks, including
hotter and drier historical trends and a greater fraction
of the area with projected temperature increases
>2 °C, the upper limit of the Paris Agreement goal.
National parks in Alaska are most exposed to temper-
ature increases while Hawaii, the Virgin Islands, and
the southwestern US are most exposed to precipitation
decreases.

US national parks protect some of the most
irreplaceable ecosystems and cultural sites in the
world. The climate spatial data presented here can
enable national parks and other US protected areas to
analyze vulnerabilities of numerous endangered spe-
cies and resources whose vulnerability is currently
unknown. Projected changes suggest considerable
future vulnerabilities and the need for adaptation
under all scenarios. Nevertheless, greenhouse gas
emissions reductions could substantially reduce the
magnitude of anthropogenic climate change, offering
hope for the future of the US national parks and the
resources they protect for future generations.
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Table S8. Projected annual precipitation changes. Projected changes and standard deviations (SD) for the difference
between the periods 1971-2000 and 2071-2100, from ensembles of all general circulation model available for IPCC (2013).

RCP2.6 RCP4.5 RCP6.0 RCP8.5 RCP2.6 RCP4.5 RCP6.0 RCP8.5
Area Change Decrease
mean + SD

km? % century % of area
United States
Contiguous 48 states 7.8 x 10° 58 5+25 6+20 7124 0 12 16 19
Alaska 1.5x 108 11+7 17 +8 18+9 31+11 0 0 0 0
Hawaii 1.7 x 10* 1+196 1+65 3142 10 £ 56 6 31 0 0
Puerto Rico, VirginIs. 9.3 x 10° 0.1+11 -10+ 20 -9+21 -23 + 26 44 100 100 100
Guam 560 6+15 9+21 10+18 19+32 0 0 0 0
American Samoa 160 -1+£17 1+18 -1+£22 3+25 100 0 100 0
Total 9.3 x 10° 6+8 7122 8+18 11+£22 <1 10 13 16
National Park System
Contiguous 48 states 1.3x10° 6+8 5+24 6+24 7+17 0 4 8 14
Alaska 2.2x10° 11+7 17 +7 17+9 3011 0 0 0 0
Hawaii 1.8x 10° 1+256 3176 3+41 12+51 4 7 0 0
Puerto Rico, VirginIs. 39 -0.1+10 -10+ 20 -8+21 -22 + 25 67 100 100 100
Guam 5 6+15 9+21 10+18 19+32 0 0 0 0
American Samoa 14 -1+£17 1+18 -1+£22 3+24 100 0 100 0
Total 3.6 x10° 9+9 13+14 13+14 2114 <1 2 3 5
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